Sample solutions to the 2024 VCAA NHT papers

Specialist Mathematics Examination 2

Question 7

Let y = f(x) be the solution to the differential equation $\frac{dy}{dx} = 1 + 2y$ with the initial condition f(0) = 1.

What is the approximation for f(1) using Euler's method, starting at x = 0 with a step size of 0.5?

A. 1.5	f(o) = 1
B. 2.5	$f(0.5) = 1 + 0.5(1 + 2 \times 1) = 1 + 0.5 \times 3 = 2.5$
C. 3.5	
D . 4.5	$f(1) = 2.5 + 0.5(1 + 2 \times 2.5) = 2.5 + 0.5 \times 6 = 5.5$
D. 4.5 E. 5.5	

To order a full copy of these solutions please point your browser to <u>https://russellboyle.com/orders.html</u>

Mathematical Methods Examination 2

Question 2

For two independent events, *A* and *B*, it is known that Pr(A) = 0.6 and $Pr(A \cup B) = 0.92$. Pr(B) is equal to

(A)
$$\frac{4}{5}$$

(B) $\frac{4}{15}$
(C) $\frac{8}{15}$
(C) $\frac{8}{15}$
(C) $\frac{8}{25}$
(C) $\frac{8}{25}$

To order a full copy of these solutions please point your browser to <u>https://russellboyle.com/orders.html</u>

General Mathematics Examination 1

Question 5

The heights of a group of Year 9 students were measured and the standard deviation was found to be 12.25 cm.

One student with a height of 174.6 cm had a standardised score of z = 0.45

The mean height of this group of students, in centimetres, was closest to

	161.9	174.6 - 7		0.45
	169.1 180.1	12.25	7	
	186.4	26	=	169.0875
Е.	187.3	<i></i>		,

To order a full copy of these solutions please point your browser to https://russellboyle.com/orders.html